41 research outputs found

    Cell-free expression and molecular modeling of the γ-secretase complex and G-protein-coupled receptors

    Get PDF
    Alzheimer’s disease (AD), which was first reported more than a century ago by Alhzeimer, is one of the commonest forms of dementia which affects >30 million people globally (>8 million in Europe). The origin and pathogenesis of AD is poorly understood and there is no cure available for the disease. AD is characterized by the accumulation of senile plaques composed of amyloid beta peptides (Ab 37-43) which is formed by the gamma secretase (GS) complex by cleaving amyloid precursor protein. Therefore GS can be an attractive drug target. Since GS processes several other substrates like Notch, CD44 and Cadherins, nonspecific inhibition of GS has many side effects. Due to the lack of crystal structure of GS, which is attributed to the extreme difficulties in purifying it, molecular modeling can be useful to understand its architecture. So far only low resolution cryoEM structures of the complex has been solved which only provides a rough structure of the complex at low 12-15 A resolution Furthermore the activity of GS in vitro can be achieved by means of cell-free (CF) expression. GS comprises catalytic subunits namely presenilins and supporting elements containing Pen-2, Aph-1 and Nicastrin. The origin of AD is hidden in the regulated intramembrnae proteolysis (RIP) which is involved in various physiological processes and also in leukemia. So far growth factors, cytokines, receptors, viral proteins, cell adhesion proteins, signal peptides and GS has been shown to undergo RIP. During RIP, the target proteins undergo extracellular shredding and intramembrane proteolysis. This thesis is based on molecular modeling, molecular dynamics (MD) simulations, cell-free (CF) expression, mass spectrometry, NMR, crystallization, activity assay etc of the components of GS complex and G-protein coupled receptors (GPCRs). First I validated the NMR structure of PS1 CTF in detergent micelles and lipid bilayers using coarse-grained MD simulations using MARTINI forcefield implemented in Gromacs. CTF was simulated in DPC micelles, DPPC and DLPC lipid bilayer. Starting from random configuration of detergent and lipids, micelle and lipid bilyer were formed respectively in presence of CTF and it was oriented properly to the micelle and bilyer during the simulation. Around DPC molecules formed micelle around CTF in agreement of the experimental results in which 80-85 DPC molecules are required to form micelles. The structure obtained in DPC was similar to that of NMR structure but differed in bilayer simulations showed the possibility of substrate docking in the conserved PAL motif. Simulations of CTF in implicit membrane (IMM1) in CHAMM yielded similar structure to that from coarse grained MD. I performed cell-free expression optimization, crystallization and NMR spectroscopy of Pen-2 in various detergent micelles. Additionally Pen-2 was modeled by a combination of rosetta membrane ab-initio method, HHPred distant homology modeling and incorporating NMR constraints. The models were validated by all atom and coarse grained MD simulations both in detergent micelles and POPC/DPPC lipid bilayers using MARTINI forcefield. GS operon consisting of all four subunits was co-expressed in CF and purified. The presence of of GS subunits after pull-down with Aph-1 was determined by western blotting (Pen-2) and mass spectrometry (Presenilin-1 and Aph-1). I also studied interactions of especially PS1 CTF, APP and NTF by docking and MD. I also made models and interfaces of Pen-2 with PS1 NTF and checked their stability by MD simulations and compared with experimental results. The goal is to model the interfaces between GS subunits using molecular modeling approaches based on available experimental data like cross-linking, mutations and NMR structure of C-terminal fragment of PS1 and transmembrane part of APP. The obtained interfaces of GS subunits may explain its catalysis mechanism which can be exploited for novel lead design. Due to lack of crystal/NMR structure of the GS subunits except the PS1 CTF, it is not possible to predict the effect of mutations in terms of APP cleavage. So I also developed a sequence based approach based on machine learning using support vector machine to predict the effect of PS1 CTF L383 mutations in terms of Aβ40/Aβ42 ratio with 88% accuracy. Mutational data derived from the Molgen database of Presenilin 1 mutations was using for training. GPCRs (also called 7TM receptors) form a large superfamily of membrane proteins, which can be activated by small molecules, lipids, hormones, peptides, light, pain, taste and smell etc. Although 50% of the drugs in market target GPCRs , only few are targeted therapeutically. Such wide range of targets is due to involvement of GPCRs in signaling pathways related to many diseases i.e. dementia (like Alzheimer's disease), metabolic (like diabetes) including endocrinological disorders, immunological including viral infections, cardiovascular, inflammatory, senses disorders, pain and cancer. Cannabinoid and adrenergic receptors belong to the class A (similar to rhodopsin) GPCRs. Docking of agonists and antagonists to CB1 and CB2 cannabinoid receptors revealed the importance of a centrally located rotamer toggle switch, and its possible role in the mechanism of agonist/antagonist recognition. The switch is composed of two residues, F3.36 and W6.48, located on opposite transmembrane helices TM3 and TM6 in the central part of the membranous domain of cannabinoid receptors. The CB1 and CB2 receptor models were constructed based on the adenosine A2A receptor template. The two best scored conformations of each receptor were used for the docking procedure. In all poses (ligand-receptor conformations) characterized by the lowest ligand-receptor intermolecular energy and free energy of binding the ligand type matched the state of the rotamer toggle switch: antagonists maintained an inactive state of the switch, whereas agonists changed it. In case of agonists of β2AR, the (R,R) and (S,S) stereoisomers of fenoterol, the molecular dynamics simulations provided evidence of different binding modes while preserving the same average position of ligands in the binding site. The (S,S) isomer was much more labile in the binding site and only one stable hydrogen bond was created. Such dynamical binding modes may also be valid for ligands of cannabinoid receptors because of the hydrophobic nature of their ligand-receptor interactions. However, only very long molecular dynamics simulations could verify the validity of such binding modes and how they affect the process of activation. Human N-formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) involved in many physiological processes, including host defense against bacterial infection and resolving inflammation. The three human FPRs (FPR1, FPR2 and FPR3) share significant sequence homology and perform their action via coupling to Gi protein. Activation of FPRs induces a variety of responses, which are dependent on the agonist, cell type, receptor subtype, and also species involved. FPRs are expressed mainly by phagocytic leukocytes. Together, these receptors bind a large number of structurally diverse groups of agonistic ligands, including N-formyl and nonformyl peptides of different composition, that chemoattract and activate phagocytes. For example, N-formyl-Met-Leu-Phe (fMLF), an FPR1 agonist, activates human phagocyte inflammatory responses, such as intracellular calcium mobilization, production of cytokines, generation of reactive oxygen species, and chemotaxis. This ligand can efficiently activate the major bactericidal neutrophil functions and it was one of the first characterized bacterial chemotactic peptides. Whereas fMLF is by far the most frequently used chemotactic peptide in studies of neutrophil functions, atomistic descriptions for fMLF-FPR1 binding mode are still scarce mainly because of the absence of a crystal structure of this receptor. Elucidating the binding modes may contribute to designing novel and more efficient non-peptide FPR1 drug candidates. Molecular modeling of FPR1, on the other hand, can provide an efficient way to reveal details of ligand binding and activation of the receptor. However, recent modelings of FPRs were confined only to bovine rhodopsin as a template. To locate specific ligand-receptor interactions based on a more appropriate template than rhodopsin we generated the homology models of FPR1 using the crystal structure of the chemokine receptor CXCR4, which shares over 30% sequence identity with FPR1 and is located in the same γ branch of phylogenetic tree of GPCRs (rhodopsin is located in α branch). Docking and model refinement procedures were pursued afterward. Finally, 40 ns full-atom MD simulations were conducted for the Apo form as well as for complexes of fMLF (agonist) and tBocMLF (antagonist) with FPR1 in the membrane. Based on locations of the N- and C-termini of the ligand the FPR1 extracellular pocket can be divided into two zones, namely, the anchor and activation regions. The formylated M1 residue of fMLF bound to the activation region led to a series of conformational changes of conserved residues. Internal water molecules participating in extended hydrogen bond networks were found to play a crucial role in transmitting the agonist-receptor interactions. A mechanism of initial steps of the activation concurrent with ligand binding is proposed. I accurately predicted the structure and ligand binding pose of dopamine receptor 3 (RMSD to the crystal structure: 2.13 Å) and chemokine receptor 4 (CXCR4, RMSD to the crystal structure 3.21 Å) in GPCR-Dock 2010 competition. The homology model of the dopamine receptor 3 was 8 th best overall in the competition

    FGF-2-dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis

    Full text link
    Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus-mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2-dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle

    Monitoring the 5'UTR landscape reveals isoform switches to drive translational efficiencies in cancer

    Full text link
    Transcriptional and translational control are key determinants of gene expression, however, to what extent these two processes can be collectively coordinated is still poorly understood. Here, we use Nanopore long-read sequencing and cap analysis of gene expression (CAGE-seq) to document the landscape of 5' and 3' untranslated region (UTR) isoforms and transcription start sites of epidermal stem cells, wild-type keratinocytes and squamous cell carcinomas. Focusing on squamous cell carcinomas, we show that a small cohort of genes with alternative 5'UTR isoforms exhibit overall increased translational efficiencies and are enriched in ribosomal proteins and splicing factors. By combining polysome fractionations and CAGE-seq, we further characterize two of these UTR isoform genes with identical coding sequences and demonstrate that the underlying transcription start site heterogeneity frequently results in 5' terminal oligopyrimidine (TOP) and pyrimidine-rich translational element (PRTE) motif switches to drive mTORC1-dependent translation of the mRNA. Genome-wide, we show that highly translated squamous cell carcinoma transcripts switch towards increased use of 5'TOP and PRTE motifs, have generally shorter 5'UTRs and expose decreased RNA secondary structures. Notably, we found that the two 5'TOP motif-containing, but not the TOP-less, RPL21 transcript isoforms strongly correlated with overall survival in human head and neck squamous cell carcinoma patients. Our findings warrant isoform-specific analyses in human cancer datasets and suggest that switching between 5'UTR isoforms is an elegant and simple way to alter protein synthesis rates, set their sensitivity to the mTORC1-dependent nutrient-sensing pathway and direct the translational potential of an mRNA by the precise 5'UTR sequence

    GPR180 is a component of TGFβ signalling that promotes thermogenic adipocyte function and mediates the metabolic effects of the adipocyte-secreted factor CTHRC1

    Get PDF
    Activation of thermogenic brown and beige adipocytes is considered as a strategy to improve metabolic control. Here, we identify GPR180 as a receptor regulating brown and beige adipocyte function and whole-body glucose homeostasis, whose expression in humans is associated with improved metabolic control. We demonstrate that GPR180 is not a GPCR but a component of the TGF beta signalling pathway and regulates the activity of the TGF beta receptor complex through SMAD3 phosphorylation. In addition, using genetic and pharmacological tools, we provide evidence that GPR180 is required to manifest Collagen triple helix repeat containing 1 (CTHRC1) action to regulate brown and beige adipocyte activity and glucose homeostasis. In this work, we show that CTHRC1/GPR180 signalling integrates into the TGF beta signalling as an alternative axis to fine-tune and achieve low-grade activation of the pathway to prevent pathophysiological response while contributing to control of glucose and energy metabolism.Activation of thermogenic adipocytes is a strategy to combat metabolic diseases. Here the authors report that GPR180 is a component of TGF beta signalling that promotes thermogenic adipocyte function and mediates the metabolic effects of the adipocyte-secreted factor CTHRC1, and contributes to the regulation of glucose and energy metabolism

    Exploring the pan-cancer landscape of posttranscriptional regulation

    No full text
    Summary: Understanding the mechanisms underlying cancer gene expression is critical for precision oncology. Posttranscriptional regulation is a key determinant of protein abundance and cancer cell behavior. However, to what extent posttranscriptional regulatory mechanisms impact protein levels and cancer progression is an ongoing question. Here, we exploit cancer proteogenomics data to systematically compare mRNA-protein correlations across 14 different human cancer types. We identify two clusters of genes with particularly low mRNA-protein correlations across all cancer types, shed light on the role of posttranscriptional regulation of cancer driver genes and drug targets, and unveil a cohort of 55 mutations that alter systems-wide posttranscriptional regulation. Surprisingly, we find that decreased levels of posttranscriptional control in patients correlate with shorter overall survival across multiple cancer types, prompting further mechanistic studies into how posttranscriptional regulation affects patient outcomes. Our findings underscore the importance of a comprehensive understanding of the posttranscriptional regulatory landscape for predicting cancer progression

    The expanding superfamily of gelsolin homology domain proteins

    No full text
    The gelsolin homology (GH) domain has been found to date exclusively in actin-binding proteins. In humans, three copies of the domain are present in CapG, five copies in supervillin, and six copies each in adseverin, gelsolin, flightless I and the villins: villin, advillin and villin-like protein. Caenorhabditis elegans contains a four-GH-domain protein, GSNL-1. These architectures are predicted to have arisen from gene triplication followed by gene duplication to result in the six-domain protein. The subsequent loss of one, two or three domains produced the five-, four-, and three-domain proteins, respectively. Here we conducted BLAST and hidden Markov based searches of UniProt and NCBI databases to identify novel gelsolin domain containing proteins. The variety in architectures suggests that the GH domain has been tested in many molecular constructions during evolution. Of particular note is flightless-like I protein (FLIIL1) from Entamoeba histolytica, which combines a leucine rich repeats (LRR) domain, seven GH domains, and a headpiece domain, thus combining many of the features of flightless I with those of villin or supervillin. As such, the GH domain superfamily appears to have developed along complex routes. The distribution of these proteins was analyzed in the 343 completely sequenced genomes, mapped onto the tree of life, and phylogenetic trees of the proteins were constructed to gain insight into their evolution.ASTAR (Agency for Sci., Tech. and Research, S’pore

    Scalable Automated Methods for Dynamic Program Analysis

    No full text
    129 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2006.Based on the above methods we have developed tools for testing both C and Java programs. We have used the tools to find bugs in several real-world software systems including SGLIB, a popular C data structure library used in a commercial tool, implementations of the Needham-Schroeder protocol and the TMN protocol, the scheduler of Honeywell's DEOS real-time operating system, and the Sum Microsystems' JDK 1.4 collection framework.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD

    In search of the primordial actin filament

    No full text

    FGF-2–dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis

    No full text
    Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.ISSN:0027-8424ISSN:1091-649

    The Diabetes Gene JAZF1 Is Essential for the Homeostatic Control of Ribosome Biogenesis and Function in Metabolic Stress

    No full text
    The ability of pancreatic β-cells to respond to increased demands for insulin during metabolic stress critically depends on proper ribosome homeostasis and function. Excessive and long-lasting stimulation of insulin secretion can elicit endoplasmic reticulum (ER) stress, unfolded protein response, and β-cell apoptosis. Here we show that the diabetes susceptibility gene JAZF1 is a key transcriptional regulator of ribosome biogenesis, global protein, and insulin translation. JAZF1 is excluded from the nucleus, and its expression levels are reduced upon metabolic stress and in diabetes. Genetic deletion of Jazf1 results in global impairment of protein synthesis that is mediated by defects in ribosomal protein synthesis, ribosomal RNA processing, and aminoacyl-synthetase expression, thereby inducing ER stress and increasing β-cell susceptibility to apoptosis. Importantly, JAZF1 function and its pleiotropic actions are impaired in islets of murine T2D and in human islets exposed to metabolic stress. Our study identifies JAZF1 as a central mediator of metabolic stress in β-cells.ISSN:2666-3864ISSN:2211-124
    corecore